Besov and Triebel–Lizorkin space estimates for fractional diffusion
نویسندگان
چکیده
منابع مشابه
Space-time duality for fractional diffusion
Zolotarev proved a duality result that relates stable densities with different indices. In this paper, we show how Zolotarev duality leads to some interesting results on fractional diffusion. Fractional diffusion equations employ fractional derivatives in place of the usual integer order derivatives. They govern scaling limits of random walk models, with power law jumps leading to fractional de...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملSharp Energy Estimates for Nonlinear Fractional Diffusion Equations
We study the nonlinear fractional equation (−∆)u = f(u) in R, for all fractions 0 < s < 1 and all nonlinearities f . For every fractional power s ∈ (0, 1), we obtain sharp energy estimates for bounded global minimizers and for bounded monotone solutions. They are sharp since they are optimal for solutions depending only on one Euclidian variable. As a consequence, we deduce the one-dimensional ...
متن کاملContinuous Dependence Estimates for Nonlinear Fractional Convection-diffusion Equations
We develop a general framework for finding error estimates for convection-diffusion equations with nonlocal, nonlinear, and possibly degenerate diffusion terms. The equations are nonlocal because they involve fractional diffusion operators that are generators of pure jump Lévy processes (e.g. the fractional Laplacian). As an application, we derive continuous dependence estimates on the nonlinea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 2018
ISSN: 0018-2079
DOI: 10.32917/hmj/1533088828